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Abstract. Relativistic coupled cluster method (CCM) is applied to compute the low lying excited and ion
states of strontium and ytterbium atom. The resulting excitation and ionization energies are in excellent
agreement with experimental data and with other correlated calculations. The nuclear magnetic dipole
hyperfine constants (A) and electric quadrupole hyperfine constants (B) of excited states are also evaluated
and are in accord with experiment. We further address the basis set dependency of the computed properties.

PACS. 31.25.Jf Electron correlation calculations for atoms and ions: excited states

1 Introduction

The accurate estimation of transition energies and nuclear
magnetic dipole hyperfine constants for singly ionized
metal ions, such as Sr+ and Yb+ is important because
these atoms can be used in cold traps as possible fre-
quency standards. For instance, an optical frequency stan-
dard based on Sr+ has recently been developed at the Na-
tional Physical Laboratory [1,2]. In addition, calculations
of the hyperfine coupling constant are relevant to studies
of parity non-conservation in atoms because the electro-
weak interaction is also a short range force like those de-
termining the hyperfine coupling constant. However, the
theoretical determination of the hyperfine coupling con-
stant is, probably, one of the most non-trivial problems
in atomic physics because an accurate prediction requires
precise incorporation of the strongly entangled relativistic
and higher order correlation and relaxation effects.

A variety of many-body methods (perturbative and
non-perturbative) are available for incorporating relativis-
tic and dynamical electron correlation contributions into
descriptions of many-electron systems. Among the non-
perturbative varieties, the coupled cluster (CC) method,
has been demonstrated in extensive non-relativistic and
relativistic studies to be capable of providing accurate
predictions of transition energies and related properties
for complex atomic and molecular systems. This article
describes computations for excitation and ionization en-
ergies, magnetic dipole hyperfine constants, and other re-
lated properties of Sr and Yb atom using relativistic CC
method. While the properties of Sr+ have been studied
using relativistic single reference second order many-body
perturbation theory (SR-MBPT) [3] and coupled cluster
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methods [4], relativistic calculations for the corresponding
neutral states are not available, in part, because of the
greater complexity involved in the calculation of excited
states for the neutral systems.

The open-shell CC (OSCC) [5–11] computation for the
excitation energies of a closed shell neutral systems M
can be carried out either via double electron attachment
process to its doubly positive ion (M++) [12] or through
electron attachment and detachment processes [9,10] to
the neutral systems M . The determination of excitation
energies via double electron attachment process is com-
putationally simple provided the doubly positive ion is
closed shell or dominated by single reference function.
In the present work, the excited state energies of Sr and
Yb atom are computed using double electron attachment
OSCC method as the ground state of Sr++ and Yb++ is
closed shell.

2 Coupled cluster method

Since the Coupled Cluster method used in this work is
discussed elsewhere [9,10,13], we only outline the essential
features of the method here.

Here, we employ the straight forward extension of non-
relativistic coupled cluster theory to the relativistic regime
by adopting the no-virtual-pair approximation (NVPA)
along with appropriate modification of orbital form and
potential terms [12]. We begin with Dirac-Coulomb Hamil-
tonian (H) expressed in normal order

HN = H − 〈0|H |0〉
=

∑

ij

〈i|f |j〉{a†
iaj} +

1
4

∑

i,j,k,l

〈ij||kl〉{a†
ia

†
jalak}, (1)
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where
〈ij||kl〉 = 〈ij| 1

r12
|kl〉 − 〈ij| 1

r12
|lk〉. (2)

The valence universal Fock space open-shell coupled clus-
ter method is employed which begins with the decompo-
sition of the full many-electron Hilbert space of dimen-
sion N into a reference space M0 of dimension M � N ,
defined by the projector P , and its orthogonal comple-
ment M⊥

0 associated with the projector Q = 1−P . A va-
lence universal wave operator Ω is then introduced which
satisfies

|Ψi〉 = Ω|Ψ (0)
i 〉, i = 1, . . . , M (3)

where |Ψ (0)
i 〉 and |Ψi〉 are the unperturbed and the exact

wave functions of the ith eigenstate of the Hamiltonian,
respectively. The wave operator Ω, which formally rep-
resents the mapping of the reference space M0 onto the
target space M spanned by the M eigenstates |Ψi〉, has
the properties

ΩP = Ω, PΩ = P, Ω2 = Ω. (4)

With the aid of the wave operator Ω, the Schrödinger
equation for the M eigenstates of the Hamiltonian corre-
lating with the M -dimensional reference space, i.e.,

H |Ψi〉 = Ei|Ψi〉, i = 1, . . . , M, (5)

is transformed into a generalized Bloch equation,

HΩP = ΩHΩP = ΩPHeffP, (6)

where Heff ≡ PHΩP is the effective Hamiltonian. Once
equation (6) is solved for the wave operator Ω, the ener-
gies Ei, i = 1, . . . , M , are computed by diagonalizing the
effective Hamiltonian Heff in the M -dimensional reference
space M0.

The Dirac-Fock equations are first solved for M++

which defines the (0-hole, 0-particle) sector of the Fock
space. Following Lindgren’s formulation [9], we express the
Schrödinger equation for the (0-hole, 0-particle) correlated
reference space state as

H |Ψ (0,0)
ref 〉 = ErefΩ

(0,0)|Φref〉
= Eref

{
exp(S(0,0))

}
|Φ(0,0)

ref 〉, (7)

where |Φ(0,0)
ref 〉 is the unperturbed closed shell reference

space state, Ω(0,0) is the valence universal wave oper-
ator and Eref is the exact reference state energy. The
curly brackets in equation (7) denote normal ordering. The
0-hole, 0-particle cluster operator S(0,0) is defined with re-
spect to Φ

(0,0)
ref as

S(0,0) =
∑

p,α

〈
p|s(0,0)

1 |α
〉
{a†

paα}

+
1
4

∑

p,q,α,β

〈
pq|s(0,0)

2 |αβ
〉 {

a†
pa

†
qaβaα

}
+ · · · (8)

where the hole and particle orbitals are labeled by α, β, ...,
and p, q, ..., respectively. The cluster amplitudes S(0,0)

are determined by pre-multiplying equation (7) with
[Ω(0,0)]−1 and projecting the resulting equation onto the
virtual space states Q, i.e., by setting

Q(0,0)HP (0,0) = 0 (9)

where the operator H is defined as

H =
[
Ω(0,0)

]−1

HΩ(0,0). (10)

One-electron is then added to the correlated reference
space state following the Fock-space strategy

M++ + e → M+

M+ + e → M.

The singly ionized (M+) correlated state is expressed as

H |Ψ (0,1)
i 〉 = EiΩ

(0,1)|Φ(0,1)
ref 〉

= Ei{exp(S(0,0) + S(0,1))}|Φ(0,1)
ref 〉, (11)

where Ei is the energy of the ith singly ionized state and
Φ

(0,1)
ref is the reference space for (0-hole, 1-particle) valence

sector
|Φ(0,1)

ref 〉 =
∑

p

Cpa
†
p|Φ(0,0)

ref 〉 (12)

where a†
p’s are particle creation operators. Pre-multiplying

equation (11) by
[
Ω(0,0)

]−1
we get

H
{

1 + S(0,1)
}
|Φ(0,1)

ref 〉 = H
(0,1)
eff {1 + S(0,1)}|Φ(0,1)

ref 〉, (13)

where

S(0,1) =
∑

p�=v

〈
p|s(0,1)

1 |v
〉 {

a†
pav

}

+
1
2

∑

p,q,v,α

〈
pq|s(0,1)

2 |vα
〉
{a†

pa
†
qaαav} + · · · (14)

in which v refers to valence orbital (unoccupied at DF
level). H

(0,1)
eff is the effective Hamiltonian for the (0, 1) va-

lence sector which on diagonalization yields electron affin-
ity or valence electron removal energy. The cluster ampli-
tudes S(0,1) are determined by projecting equation (13)
on the virtual space states which are orthogonal to Φ

(0,1)
ref

reference space space. The operator {exp(S(0,1)} reduces
to (1 + S(0,1)) because

S(0,1)S(0,1)|Φ(0,1)
ref 〉 = 0. (15)

[S(0,1) − S(0,1) contraction is not allowed due to normal
ordering.] Once S(0,0) and S(0,1) are known, the correlated
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reference space states for the neutral species (M) can be
expressed as

|Ψ (0,2)〉 = Ω|Φ(0,2)
ref 〉

=
{

exp
(

S(0,0) + S(0,1) +
1
2
S(0,1)S(0,1)

+S(0,2)
)}

|Φ(0,2)
ref 〉 (16)

where S(0,2) are cluster operators for double electron at-
tachment process. The unperturbed function Φ

(0,2)
ref is de-

fined as
|Φ(0,2)

ref 〉 =
∑

p,q

Cpqa
†
pa

†
q|Φ(0,0)

ref 〉. (17)

The excited state energies are then computed by diago-
nalizing the effective Hamiltonian H

(0,2)
eff , where

H
(0,2)
eff = 〈Φ(0,2)

ref |ĤD{S(0,1)+
1
2
S(0,1)S(0,1)+S(0,2))}|Φ(0,2)

ref 〉,
(18)

where

S(0,2) =
1
4

∑

p,q,v1,v2

〈
pq|s(0,2)

2 |v1v2

〉
{a†

pa
†
qav2av1} + · · ·

(19)

It is evident from equation (19) that under two-body
truncation scheme, S(0,2) = 0 for complete model space
(CMS) [10,14]. Thus, for CMS, the excited energies for
the neutral species can be determined with aid of S(0,0)

and S(0,1) cluster amplitudes. We emphasize that in the
procedure, valence electron removal energies are the by-
products of this scheme with no extra cost. [Representative
Goldstone diagrams for H

(0,2)
eff and H

(0,1)
eff are depicted in

Fig. 1.]

3 Computational details

The large and small component relativistic radial wave
functions are expressed as linear combinations of basis
functions,

Pnκ(r) =
N∑

p=1

CL
κpg

L
κp(r); Qnκ(r) =

N∑

p=1

CS
κpg

S
κp(r),

(20)
where the summation index p runs over the number of ba-
sis functions N and gL

κp (gS
κp) and CL

κp (CS
κp) are the basis

functions and expansion coefficients for the large (small)
components, respectively. The basis functions employed
in these calculations are Gaussian type orbitals (GTOs)
of the form,

gL
κp(r) = NL

p rnκe−αpr2
, (21)

with
αp = α0β

p−1, (22)

where α0, β are user defined constants, nκ specifies the
orbital symmetries (1 for s, 2 for p, etc.) and NL

p is the
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Fig. 1. Representative Heff diagrams for (0, 1) and (0, 2)
valence sector.

normalization factor for the large component. The small
component normalization factor is obtained by imposing
the kinetic balance condition,

gS
κp(r) = NS

p

(
d

dr
+

κ

r

)
gL

κp(r), (23)

where

NS
p =

√
αp

2nκ − 1
[4(κ2 + κ − nκ) − 1]. (24)

The ground and excited state properties of Sr, Yb and
their positive ions are computed using 37s33p28d12f5g
GTOs with α0 = 0.00525 and β = 2.73. [High lying unoc-
cupied orbitals are kept frozen in CC calculations.]

4 Results and discussions

Table 1 compares the calculated first ionization potential
(FIP) and low lying excitation energies (EE) of Sr and Yb
with the experimental data [15–17]. As can be seen from
Table 1, the CC ionization potentials for Sr and Yb atoms
are in excellent with the experiment (off by 28 cm−1 for
Sr and 111 cm−1 for Yb).

The reference space for excitation energy calculations
is constructed by allocating 5s (6s) valence electrons of
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Table 1. First ionization potential (FIP) and low lying excita-
tion energies (EE) and fine structure splittings (FS) of Sr and
Yb atoms. All entrees are in cm−1.

Atoms State This work CC Expt.

[18] [15,17]

Sr FIP 45954 45926

EE

[Kr]5s2(1S0) 0 0

[Kr]5s5p(3P0) 14333 14327

[Kr]5s5p(3P1) 14547 14514

FS 214 187

[Kr]5s5p(3P2) 14969 14898

FS 422 384

[Kr]5s4d(3D1) 17839 18159

[Kr]5s4d(3D2) 17879 18219

FS 40 60

[Kr]5s4d(3D3) 17957 18319

FS 78 100

[Kr]5s5p(1P1) 22634 21698

[Kr]5s6s(3S1) 28978 29038

[Kr]5s6s(1S1) 30522 30592

Yb FIP 50552 51142 50441

EE

4f146s2(1S0) 0 0

4f146s6p(3P0) 17576 17346 17288

4f146s6p(3P1) 18424 18082 17992

FS 848 736 704

4f146s6p(3P2) 20218 19847 19710

FS 1794 1765 1718

4f145d6s(3D1) 25865 24981 24489

4f145d6s(3D2) 25966 25229 24751

4f145d6s(3D3) 26125 25735 25270

4f146s7s(3S1) 32967 32695

4f146s7s(1S0) 34932 34351

Sr (Yb) among 5s6s7s5p6p4d5d (6s7s8s6p7p5d6d for Yb)
valence orbitals in all possible way. The computed CC ex-
citation energies for the low lying states of Sr atom are
in accord with the experiment except for the 1P1 state of
Sr. The maximum error in the estimated excitation en-
ergy for Sr is only 71 cm−1 (or 0.47%) for the 3P2(5s5p)
state. The CC method also provides a fairly accurate esti-
mate of the 1S0(5s2) → 3P0(5s5p), 1S0(5s2) → 3P1(5s5p),
1S0(5s2) → 1S0(5s6s), and 1S0(5s2) → 3S1(5s6s) transi-
tion energies, which deviate by 6, 31, 60, and 70 cm−1,
respectively, from the experiment. Compared to S and P
states, our computed excitation energies for 1P1 state and
s → d transition and are not so accurate for Sr atom.
The errors in our estimated transition energies for Sr D
states are off by 1.8%. It is evident from Table 1 (also
from Tabs. 3 and 4 of Ref. [18]) that accurate estimate
of s → p(1P1) transition energy is quite problematic. In-
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Fig. 2. Abs. error (in %) in the computed valence electron
removal energy (×) and magnetic hyperfine constant (+) for
2S1/2(5s) state vs. number of basis functions.

clusion of low lying f orbitals in the reference space is
probably necessary to improve the accuracy of 1P1 (also
D) state energies. However, this is not considered here be-
cause of computational complexity.

The ionization and low excitation energies of Yb are
also reasonably close to the experiment but are not as
accurate as those obtained for Sr atom from CCM. The
earlier CC calculation by Eliav et al. [18] estimates the
FIP of Yb to be 51142 cm−1, which is off by 732 cm−1

from the experiment. Like Sr, the transition energies of
Yb for 3S and 3P states are more accurately reproduced
by CC than the D states. At this juncture, we emphasize
that similar trend is also observed by Eliav et al. in their
CC calculations for Yb, Ba and Ra atom [12,18].

Based on our Sr calculations (see Fig. 2), we feel that
the correlation contribution to the transition energies from
orbitals with l ≥ 5 will be non-negligible for Yb (l is the
orbital angular momentum). Thus, we believe that the in-
accuracy in our computed transition energies of Yb mainly
arises due to the basis set inadequacy. The absence of Breit
interaction in our calculations is also partly responsible for
the inaccuracy and efforts are underway to enable includ-
ing these effects.

Table 2 compares the CC calculations for low lying
valence electron ionization energies of Sr+ and Yb+ with
other correlated calculations [3,4,18,19] and with exper-
iment [15]. As can be seen in Table 2, the valence elec-
tron removal energies and associated fine structure split-
ting (labeled as FS in Tab. 2) for Sr and Yb are well
reproduced in the present calculations. A careful analy-
sis indicates that, for Sr atom, only the [Kr]5p CC va-
lence electron removal energy is slightly poor (off by
129 cm−1) compared to the Martensson’s [4] estimate (off
by 60 cm−1), while the [Kr]5s valence electron removal
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Table 2. Theoretical and experimental valence electron ion-
ization energies and fine structure splittings (FS) of Sr+ and
Yb+ ions. All entrees are in cm−1.

State MBPT CC This work Experiment

[15,17]

Sr+

5s(2S1/2) 89631 [3] 89126 [4] 88965 88964

5p(2P1/2) 65487 [3] 65309 [4] 65120 65249

5p(2P3/2) 64663 [3] 64499 [4] 64315 64448

FS 824 [3] 810 805 801

6s(2S1/2) 41079 41228

6p(2P1/2) 33096 33194

6p(2P3/2) 32801 32906

FS 295 288

Yb+

6s(2S1/2) 0 0 0

5d(2D3/2) 22888 [19] 23770 [18] 23179 23285

5d(2D5/2) 23549 [19] 25072 [18] 24342 24333

661 [19] 1302 1253 1372

6p(2P1/2) 26000 [19] 27868 [18] 27664 27062

6p(2P3/2) 29005 [19] 31324 [18] 31037 30392

FS 3005 [19] 3456 3373 3330

energy and fine structure splittings (FS) are better repro-
duced in the present calculations. The FS reported in this
work are off by 4 and 7 cm−1 for 2P1/2(5p) → 2P3/2(5p)
and 2P1/2(6p) → 2P3/2(6p) states, respectively.

We now compare the excitation energies of Yb and its
positive ion reported by Eliav et al. [18] with the present
calculations. As can be seen in Tables 1 and 2 that the
excitation energies (also FS) of Yb are better reproduced
than its positive ion in Eliav et al. calculations whereas
the positive ion state energies of Yb are in better agree-
ment in our calculations. The EEs of Yb and Yb+ in the
present calculations are off by ∼2.75% and ∼1.3%, respec-
tively. On the other hand, EEs reported in reference [18]
are off by ∼1.1% (for Yb) and ∼3.2% (for Yb+) from the
experiment. This is quite interesting but is beyond the
scope of the present approach to pinpoint the underlying
reason of this trend.

The theoretically determined nuclear magnetic dipole
and electric quadrupole hyperfine constants for the ex-
cited states of Sr+ and Yb+ are presented in Table 3. Ta-
ble 3 indicates that our predicted nuclear magnetic dipole
and electric quadrupole hyperfine constants are in gen-
eral agreement with experiments. The nuclear magnetic
dipole hyperfine constants reported here for 2S1/2, 2P3/2,
and 2D5/2 states are off by 0.58, 1.20, and 0.5 MHz and
are more accurate (on an average) than the previously
reported A value [4]. Similar trend is also observed in
our predicted B value for 2D5/2(4d) state, which is off
by 2.0 MHz from the experiment. We emphasize that un-
like transition energies, accuracy of one-electron proper-
ties such as nuclear magnetic dipole hyperfine constants

Table 3. Magnetic dipole (A) and electric quadrupole hyper-
fine (B) constant (in MHz) of the ground and low lying excited
states Sr+ and Yb+.

Ions Ref. [4] This work Experiment

Sr+

A5s(
2S1/2) 1000.0 999.89 1000.47 [20]

A5p(
2P1/2) 177.0 175.12

A5p(
2P3/2) 35.3 35.60 36.8 [21]

A4d(
2D5/2) 1.0 1.87 2.17 [20]

B4d(2D5/2) 52.0 51.12 49.11 [20]

Yb+

A6s(
2S1/2) 12386.20

A6p(
2P1/2) 2179.94

A6p(
2P3/2) 322.60

Table 4. Electric dipole matrix elements of low lying excited
states of Sr+ and Yb+. Entrees with parentheses are semi-
empirically adjusted values.

Ion Transition Guet et al. [3] This work

Sr+

5p1/2 → 5s1/2 3.052 (3.060) 3.107

5p3/2 → 5s1/2 4.313 (4.325) 4.392

Yb+

6p1/2 → 6s1/2 2.781

6p3/2 → 6s1/2 3.914

strongly depends on the basis set. Figure 2 depicts the
accuracy of A5s and 2S1/2(5s) valence electron removal
energies against the basis set. As can be seen in Figure 2
that the error in the computed A5s value sharply drops
from 3% to 0.5% when f orbitals are included in the basis
set. The computed error decreases further (from 0.5% to
0.05%) when g orbitals are included in the calculations.
Since our computed transition energies and related prop-
erties (for Sr) are quite accurate, we strongly feel that our
predicted A and B constants for Yb+ will also be in accord
with the experiment.

The electric dipole (E1) transition matrix elements
for excited states of Sr+ and Yb+ are displayed in
Table 4. It is evident from Table 4 that the η =
〈np3/2|E1|ns1/2〉/〈np1/2|E1|ns1/2〉 (n = 5 for Sr+ and 6
for Yb+) decreases as Z (nuclear charge) increases. [Note
that for light atoms 〈np3/2|E1|ns1/2〉/〈np1/2|E1|ns1/2〉 ≈√

2.] Table 4 further shows that our estimated transition
matrix elements and η for Sr+ are reasonably close to
those reported by Guet et al. [3].

5 Concluding remarks

Relativistic open-shell coupled cluster method is described
and applied to compute the low lying states of the Sr and
Yb atom and to their positive ions. Satisfactory results
are obtained for the transition energies, valence electron
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ionization potentials and other related properties. The
present work clearly demonstrates that the accuracy of
one-electron properties strongly depend upon the choice
of basis set function. It further demonstrates that the con-
tribution to the one-electron properties from orbital with
higher angular momentum is non-negligible.
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